martes, 1 de enero de 2013

CURIOSIDADES DE LA INGENIERÍA CIVIL Y ESTRUCTURAL

Analizaremos lo siguiente:

1. Esqueleto estructural y practica profesional
2. Puentes
3. Edificaciones
4. Documentales acerca de los temas del blog. 

1.- Esqueleto estructural

El esqueleto estructural forma un sistema integrado de partes, denominadas elementos estructurales: vigas, columnas, losas, zapatas de cimentación y otros.
A menudo se requiere resolver problemas de elevada complejidad que se resuelven mediante técnicas de elementos finitos que obligan a penetrar en los calculo diferencial e integral de diversas variables, temas de álgebra lineal, ecuaciones diferenciales y métodos numéricos.

El Ejercicio Profesional

La actividad profesional del ingeniero estructural se inicia con un bosquejo arquitectónico de la futura edificación, en el cual se comienzan a definir las dimensiones generales tanto en planta como en alzado. Compara las alternativas referentes al material básico de construcción: la conveniencia de usar concreto reforzado o preesforzado, aceromadera, mampostería confinada o reforzada, aluminio u otras posibilidades mas recientes. Asimismo define previamente las dimensiones longitudinales y transversales de los elementos estructurales. En la ingeniería estructural de las obras urbanas, el trabajo entre arquitectos e ingenieros resulta a menudo inseparable.
Definidas las características geométricas preliminares se pasa al proceso de predimensionamiento de los elementos estructurales: dimensiones de las vigas y columnas, características de la cimentación, definición de escaleras, muros de contención, posición de ductos de aire acondicionado. Luego se evalúa las cargas que soportara la edificación: cargas muertas que son cargas que no varían dentro de la estructura ni a lo largo deltiempo; cargas vivas que varían en espacio o en el tiempo, por el ejemplo, el peso de los ocupantes y los muebles.
El ingeniero a cargo debe analizar las fuerzas de reacción y deformaciones que del esqueleto resistentes debido a las cargas. Para esto muchos ingenieros. Muchos ingenieros disponen de programas computarizados en sus oficinas para la solución de los problemas corrientes. Algunos de los programas empleados tiene capacidades graficas que generan dibujos de las fuerzas internas y deformaciones para muchos estados de carga. Si las fuerzas internas ( torsión, momento flexor y cortante) obtenidas del análisis resultan compatibles con las resistentes y las deformaciones se supone terminada la primera fase del procedimiento. Se pueden cometer errores al confiar demasiado en los resultados automatizados. Si algo falla y no hay quien revise el producto automatizado puede haber consecuencias como perdidas humanas y de capital.
Luego se procede al refinamiento del diseño: se trata de llegar a un modelo que resulte de modo razonable más económico y funcional; al decir razonable queremos decir que se tenga en cuenta la facilidad constructiva de lo que se analiza y se diseña.

2. Puentes

Puente, estructura que proporciona una vía de paso sobre el agua, una carretera o un valle. Los puentes suelen sustentar un camino, una Carretera o una vía férrea, pero también pueden transportar tuberías y líneas de distribución de energía. Los que soportan un canal o conductos de agua se llaman Acueductos. Los puentes construidos sobre terreno seco o en un valle y formados por un conjunto de tramos cortos se suelen llamar viaductos; se llaman pasos elevados los puentes que cruzan las autopistas y las vías de tren. Un puente bajo, pavimentado, sobre aguas pantanosas o en una bahía y formado por muchos tramos cortos se suele llamar carretera elevada.

Los primeros puentes

Es probable que los primeros puentes se realizaran colocando uno o más troncos para cruzar un arroyo o atando cuerdas y cables en valles estrechos. Este tipo de puentes todavía se utiliza. Los puentes de un tramo (llamamos tramo a la distancia entre dos apoyos) son un desarrollo de estas formas elementales. El método de colocar piedras para cruzar un río, mejorado con troncos situados entre las piedras para comunicarlas, es el prototipo de puente de múltiples tramos. Los postes de madera clavados en el fondo del río para servir de apoyo de troncos o vigas permitieron atravesar corrientes más anchas y caudalosas. Estos puentes, llamados de caballete, se utilizan todavía para atravesar valles y ríos en los que no interfieren con la navegación. El uso de pilas de piedra como apoyo para los troncos o maderos fue otro avance importante en la construcción de puentes con vigas de Madera. La utilización de flotadores en lugar de apoyos fijos creó el puente de pontones. Los puentes de vigas de madera han sido los más utilizados desde la antigüedad, aunque según la tradición se construyó un puente de arco de ladrillos hacia el 1800 a.C. en Babilonia. Otros tipos de construcción, como los puentes colgantes y los cantilever, se han utilizado en la IndiaChina y Tíbet.

Los puentes modernos

Los puentes actuales se identifican por el fundamento arquitectónico utilizado, como cantilever o de tirantes, colgantes, de arco de acero, de arco de hormigón, de arco de piedra, de vigas trianguladas o de pontones. Cuando es necesario respetar el paso de barcos por debajo del puente y no es posible construirlo a la altura precisa se construyen puentes móviles. A continuación se indican algunos ejemplos importantes de los diferentes tipos de puentes.

A. Puentes de tirantes

Este tipo de puente se caracteriza porque los tramos no se sujetan por sus extremos, sino cerca del centro de sus vigas. El Puente de Normandía, de 2.200 m de longitud, inaugurado en 1995, atraviesa el estuario del Sena desde Le Havre a Honfleur, en Francia. Su tramo central tiene una longitud de 856 m. Está diseñado para soportar vientos de hasta 120 kilómetros por hora. El puente de Forth, sobre el estuario de Forth en Queensferry, Escocia, es un puente ferroviario de acero con dos tramos principales de 520 m cada uno, y una longitud total de 1,6 km; fue construido entre 1882 y 1890 por los ingenieros John Fowler y Benjamin Baker. El puente de Québec, sobre el río San Lorenzo (Québec, Canadá), terminado en 1917, tiene un tramo principal de 550 m; soporta una carretera y una vía de tren de dos carriles. El puente de Carquinez Strait, cerca de San Francisco,Estados Unidos, terminado en 1927, tiene dos tramos de 335 m y unos tramos de anclaje de 152 m; fue diseñado para resistir terremotos. El puente Howrah, sobre el río Hooghly en Calcuta, la India, tiene un tramo principal de 457 m, y se inauguró en 1943. El Gran Puente de Nueva Orleans (1958) sobre el río Mississippi (Estados Unidos) tiene un tramo principal de 480 m. El Puente de Barrios de Luna sobre el embalse de Barrios de Luna, en España, es el mayor puente del mundo atirantado de hormigón. Entró en funcionamiento en 1985 y cubre una luz de 440 metros.

B. Puentes colgantes 

El ingeniero estadounidense de origen alemán John Roebling diseñó y construyó en 1846 un puente colgante de 308 m sobre el río Ohio en Wheeling, Virginia, Estados Unidos. Fue el primer puente colgante de cables construido en el mundo. El Golden Gate, en San Francisco, Estados Unidos, inaugurado en 1937, tiene un tramo central de 1.280 m suspendido de unas torres de 227 m de altura. Tiene un margen de altura de 67 m. El puente sobre el estrecho del Bósforo en Estambul, Turquía, tiene un tramo central de 1.079 m. Se inauguró en 1973 y constituye la primera comunicación permanente de autopista entre Europa y Asia. Hasta 1995, el puente de Humber era uno de los puentes colgantes más largos del mundo. Se construyó en 1980 en el estuario del río Humber, en Inglaterra, con un tramo central de 1.410 m. El puente colgante más alto, 321 m sobre el nivel del agua, atraviesa el Royal Gorge sobre el río Arkansas, en Colorado, Estados Unidos. El puente colgante de Belgrano, situado sobre el río Paraná, tiene una longitud de 2.000 m. En 1998 se inauguró en Lisboa el puente Vasco da Gama, el mayor puente de toda Europa, con casi 18 km de longitud, y casi 15 km sobre el agua. Este puente, situado en la desembocadura del río Tajo, aliviará el tránsito de vehículos por el puente 25 de Abril, inaugurado en 1966 y con 1.013 m de luz. También en 1998 se abrió el puente del estrecho de Akashi, en Japón con un vano central de unos 1.990 metros.

C. Puentes en arco de acero

El ingeniero estadounidense James Buchanan Eads construyó el primer puente de acero sobre el río Mississippi en Saint Louis, Missouri, en el año 1874. El puente ferroviario Hell Gate, sobre el río East, en Nueva York, era el puente de arco de acero más largo del mundo cuando se inauguró en 1917, con un tramo principal de 298 m. El puente que atraviesa el río Niágara desde Queenston, Ontario, Canadá, a Lewiston, Nueva York, Estados Unidos, inaugurado en 1965, utiliza un arco de acero de 305 metros.

D. Puentes en arco de hormigón

Durante el comienzo del siglo XX, el desarrollo del hormigón armado proporcionó grandes progresos a la construcción de puentes con arcos de hormigón. El puente del Esla, sobre el río Esla, en España, con un tramo central de 197 m, se construyó en 1940. El puente de Gladesville (1964) en Sydney, Australia, se eleva 46 m sobre el río Parramatta con un arco de hormigón de 305 m. En Croacia se construyó un puente de arco de hormigón de 390 m de longitud y 67 m de altura en 1979. El puente Tancredo Neves se sitúa sobre el cañón del río Iguazú y une la localidad de Puerto Iguazú (Argentina) con la ciudad de Foz do Iguaçu (Brasil).
La construcción de viaductos se ha efectuado con puentes de arcos múltiples de hormigón. El viaducto ferroviario Tunkhannock, en Pennsylvania, Estados Unidos (1916), tiene 724 m de longitud y está formado por diez arcos de 55 m y dos de 30 m. El viaducto para automóviles Columbia, también en Pennsylvania, tiene una longitud de 2.090 m y está formado por 28 arcos de hormigón de 56 metros.

E. Puentes en arco de piedra

El desarrollo del tren provocó la reutilización de los arcos de medio punto en la construcción de puentes, realizados con piedra tallada en los lugares donde esto resultaba económico. El viaducto de piedra de Ballochmyle, que cruza el río Ayr cerca de Mauchline, en Escocia, tiene un tramo soportado por un arco de medio punto de 55 m. Un viaducto de 3.658 m compuesto por 222 arcos de piedra comunica la ciudad de Venecia con tierrafirme. El tramo soportado por arco de piedra más grande, de 90 m, es el puente de Syra, en Plauen, Alemania; se terminó en 1903. No se ha seguido construyendo puentes con arcos de piedra por su alto coste.

F. Puentes de vigas trianguladas

La construcción de puentes con vigas de acero trianguladas o reticuladas se ha empleado mucho por su bajo coste. Desarrollos recientes han aumentado la longitud de los tramos, así como la utilización de estructuras reticuladas continuas.
En los últimos años se ha desarrollado la llamada construcción ortotrópica, en la cual unas planchas de acero de refuerzo actúan al mismo tiempo como soporte de la calzada y como soporte de las vigas transversales y de las vigas maestras longitudinales. Inaugurado en 1967, el mayor puente de este tipo es el San Mateo-Hayward, en San Francisco, Estados Unidos.

G. Puentes de pontones

Son puentes flotantes permanentes, a diferencia de las estructuras temporales militares, que se instalan en lugares donde las condiciones locales lo hacen necesario. Un puente flotante de 466 m atraviesa el río Hooghly, en Calcuta, la India; soporta una carretera a 8,2 m sobre el agua con 14 pares de pontones de hierro, de 48 m de largo y 3,1 m de ancho.

H. Puentes móviles

Además de las secciones de algunos puentes de pontones, los tramos móviles pueden ser basculantes (puentes levadizos), giratorios o de elevación vertical, según las necesidades locales. El primer tipo de puente basculante fue el ala abatible de madera que servía para cruzar el foso de los castillos y que se elevaba con cadenas desde el interior. Este tipo de puente, con uno o dos tramos de bisagra y contrapesados, es apropiado para vías navegables estrechas con mucho tráfico. El Puente de la Torre (1894) sobre el río Támesis, en Londres, es el ejemplo más famoso de este tipo de construcción.
Los puentes giratorios tienen un tramo móvil montado sobre un pivote o plataforma giratoria en su centro. El tramo más largo de este tipo de puente, con 166 m, es el de un puente para trenes y automóviles, terminado en 1927 que cruza el Mississippi en Fort Madison, Iowa, Estados Unidos.


Los puentes de elevación vertical se utilizan para tramos largos donde es necesario despejar toda la anchura del canal y a una altura considerable. El tramo de elevación vertical más largo transporta una vía de tren sobre Arthur Kill, entre Staten Island y Elizabeth, Nueva Jersey, Estados Unidos; se construyó en 1959. El tramo mide 170 m y tiene un margen de altura de 9,5 m cerrado y 41 m levantado.

3. Edificaciones

Cargas de un edificio

Las cargas que soporta un edificio se clasifican en muertas y vivas. Las cargas muertas incluyen el peso del mismo edificio y de los elementos mayores del equipamiento fijo. Siempre ejercen una fuerza descendente de manera constante y acumulativa desde la parte más alta del edificio hasta su base. Las cargas vivas comprenden la fuerza del viento, las originadas por movimientos sísmicos, las vibraciones producidas por la maquinaria, mobiliario, materiales y mercancías almacenadas y por máquinas y ocupantes, así como las fuerzas motivadas por cambios de temperatura. Estas cargas son temporales y pueden provocar vibraciones, sobrecarga y fatiga de los materiales. En general, los edificios deben estar diseñados para soportar toda posible carga viva o muerta y evitar su hundimiento o derrumbe, además de prevenir cualquier distorsión permanente, exceso de movilidad o roturas.

Principales elementos de un edificio

Los principales elementos de un edificio son los siguientes: 1) los cimientos, que soportan y dan estabilidad al edificio; 2) la estructura, que resiste las cargas y las trasmite a los cimientos; 3) los muros exteriores que pueden o no ser parte de la estructura principal de soporte; 4) las separaciones interiores, que también pueden o no pertenecer a la estructura básica; 5) los sistemas de control ambiental, como iluminación, sistemas de reducción acústica, calefacción, ventilación y aire acondicionado; 6) los sistemas de transporte vertical, como ascensores o elevadores, escaleras mecánicas y escaleras convencionales; 7) los sistemas de comunicación como pueden ser intercomunicadores, megafonía y televisión por circuito cerrado, o los más usados sistemas de televisión por cable, y 8) los sistemas de suministro de electricidad, agua y eliminación de residuos.

A. Cimientos

El diseño de la estructura de un edificio depende en gran medida de la naturaleza del suelo y las condiciones geológicas del subsuelo, así como de las transformaciones realizadas por el hombre en esos dos factores.


1. Condiciones del suelo

Si se pretende construir un edificio en una zona con tradición sísmica, se deberá investigar el tipo de suelo a una profundidad considerable. Es evidente que deberán evitarse las fallas en la corteza terrestre bajo la superficie. Ciertos suelos pueden llegar a licuarse al sufrir terremotos y transformarse en arenas movedizas. En estos casos debe evitarse construir o en todo caso los cimientos deben tener una profundidad suficiente para alcanzar zonas de materiales sólidos bajo el suelo inestable. Se han encontrado suelos arcillosos que se llegan a expandir hasta 23 cm o más al someterlos a largos periodos de humedecimiento o secado, con lo que se producen potentes fuerzas que pueden cizallar o fragmentar los cimientos y elevar edificios poco pesados. Los suelos con alto contenido orgánico llegan a comprimirse con el paso del tiempo bajo el peso del edificio, disminuyendo su volumen inicial y provocando el hundimiento de la estructura. Otros tienden a deslizarse bajo el peso de las construcciones.
Los terrenos modificados de alguna forma suelen tener un comportamiento diferente, en especial cuando se ha añadido o se ha mezclado otro tipo de suelo con el original, así como en aquellos casos en que el suelo se ha humedecido o secado más de lo normal, o cuando se les ha añadido cemento u otros productos químicos como la cal. A veces el tipo de suelo sobre el que se proyecta construir varía tanto a lo largo de toda la superficie prevista que no resulta viable desde el punto de vista económico o no es posible edificar con seguridad.
Por tanto, los análisis geológicos y del suelo son necesarios para saber si una edificación proyectada se puede mantener adecuadamente y para hallar los métodos más eficaces y económicos.
Si hay una capa rocosa firme a corta distancia bajo la superficie de la obra, la resistencia de la roca permitirá que la extensión sobre la que descanse el peso de la construcción no tenga que ser demasiado grande. A medida que se van encontrando rocas y suelos más débiles, la extensión sobre la que se distribuirá el peso deberá ser mayor.

2. Tipos de cimientos

Los tipos de sistemas de cimentación más comunes se clasifican en profundos y superficiales. Los sistemas superficiales se encuentran a poca distancia bajo la base del edificio, como las losas continuas y las zapatas. Los cimientos profundos se extienden a varios metros bajo el edificio, como los pilotes y los pozos de cimentación (figura 1). La elección de los cimientos para un edificio determinado dependerá de la fortaleza de la roca y el suelo, la magnitud de las cargas estructurales y la profundidad del nivel de las aguas subterráneas.
Los cimientos más económicos son las zapatas de hormigón armado, empleados para edificios en zonas cuya superficie no presenta dificultades especiales. Estos cimientos consisten en planchas de hormigón situadas bajo cada pilar de la estructura y una plancha continua (zapata continua) bajo los muros de carga
Los cimientos de losa continua se suelen emplear en casos en los que las cargas del edificio son tan grandes y el suelo tan poco resistente que las zapatas por sí solas cubrirían más de la mitad de la zona de construcción. Consisten en una losa de hormigón armado, que soporta el peso procedente de los soportes. La carga que descansa sobre cada zona de la losa no es excesiva y se distribuye por toda la superficie. En las cimentaciones bajo edificios de gran envergadura, las cargas se pueden repartir por medio de nervaduras o muros cruzados, que rigidizan la losa.
Los pilotes se emplean sobre todo en zonas en las que las condiciones del suelo próximo a la superficie no son buenas. Están fabricados con madera, hormigón o acero y se colocan agrupados en pilares. Los pilotes se introducen a determinada profundidad dentro de la roca o suelo y cada pilar se cubre con una capa de hormigón armado. Un pilote puede soportar su carga tanto en su base como en cualquier parte de su estructura por el rozamiento superficial. La cantidad de pilotes que debe incluirse en cada pilar dependerá de la carga de la estructura y la capacidad de soporte de cada pilote de la columna. Los pilotes de madera o vigas son troncos de árboles, con lo que su longitud resulta limitada. En cambio, un pilote de hormigón puede tener una altura aceptable y se puede introducir por debajo del nivel freático. En edificios muy pesados o muy altos se emplean pilotes de acero, llamados por su forma pilotes en H, que se introducen en la roca, a menudo hasta 30 m de profundidad. Con estos pilotes se alcanza más fácilmente una mayor profundidad que con los pilotes de hormigón o madera. Aunque los pilotes de acero son mucho más caros, su coste está justificado en los grandes edificios, que suelen representar una importante inversión financiera.
Los cimientos de zapatas rígidas se emplean cuando hay un suelo adecuado para soportar grandes cargas, bajo capas superficiales de materiales débiles como turba o tierra de relleno. Un cimiento de zapatas rígidas consiste en unos pilares de hormigón construidos en forma de cilindros que se excavan en los lugares sobre los que se asentarán las vigas de la estructura. Estos cimientos soportan las cargas del edificio en su extremo inferior, que suele tener forma de campana.

3. Nivel freático

La construcción de los cimientos puede complicarse debido a la existencia de agua subterránea por encima del nivel previsto para los cimientos. En estos casos, los laterales de la excavación pueden no estar seguros y derrumbarse. La operación de bajar el nivel del agua por bombeo requiere la instalación previa de planchas entrelazadas en los lados de la excavación para evitar derrumbamientos. Cuando la cantidad de agua en una excavación es excesiva, los métodos de bombeo ordinarios, que extraen a la superficie tierra suelta mezclada con agua, pueden minar los cimientos de edificios vecinos. Para evitar los daños que puede causar el drenaje al remover el suelo, se emplean sistemas de puntos de drenaje y desagüe. Los puntos de drenaje consisten en pequeñas picas o tuberías con un filtro en uno de sus extremos, y se introducen en el suelo de modo que el filtro, que impide que la tierra entre junto con el agua, quede bajo el nivel del agua. Esta pequeña tubería está conectada a una tubería múltiple que se comunica por un tubo flexible a una bomba de agua. Así se extrae el agua bajo la excavación sin peligro para los edificios próximos. El sistema de desagüe puede incluso ahorrar la instalación de planchas en los lados de la excavación, siempre que no se prevea que el suelo pueda deslizarse sobre la obra debido a su composición o a las vibraciones de maquinaria o tráfico pesado en las cercanías.

B. Estructura

Los elementos básicos de una estructura ordinaria son suelos y cubierta (incluidos los elementos de apoyo horizontal), pilares y muros (soportes verticales) y el arriostramiento (elementos diagonales) o conexiones rígidas para dar estabilidad a la estructura.

1. Edificios de una o dos plantas

En el caso de edificios bajos es posible una mayor variedad de formas y estilos que en los edificios grandes. Además del sistema de pórticos —también utilizado en grandes edificios—, las pequeñas edificaciones pueden tener cubiertas a dos aguas, bóvedas y cúpulas. Una estructura de un solo piso puede consistir en una solera de hormigón directamente sobre el suelo, muros exteriores de albañilería soportados por una losa (o por zapatas continuas, alrededor del perímetro del edificio) y una cubierta. En edificios bajos, el uso de pilares interiores entre los muros de carga es un método muy común. También pueden emplearse pilares espaciados, apoyados en losas o zapatas, pero en este caso los muros exteriores se soportan por los pilares o están colocados entre éstos. Si la luz de cubierta del tejado es corta, se utilizan entarimados de apoyo, hechos de madera, acero u hormigón para formar la estructura del techo.


Cada material de la estructura tiene su propia relación peso-resistencia, costo y durabilidad. Como regla general, cuanto mayor sea la luz de cubierta o techo, más complicada será la estructura que lo soporte y habrá menos posibilidades para escoger los materiales apropiados. Dependiendo de la longitud de la luz, la cubierta podrá tener una estructura de vigas unidireccionales (figura 2a) o una estructura de vigas bidireccionales, apoyadas en vigas maestras de mayor tamaño que abarquen toda la extensión de la luz (figura 2b). Los apuntaladores son sustituibles por cualquiera de esos métodos y pueden tener una profundidad de menos de 30 cm o más de 9 m, y se forman entrelazando los elementos de tensión y compresión en forma de triángulos. Suelen ser de madera o acero, aunque también se pueden hacer de hormigón armado. La estructura de un edificio de una sola planta también puede consistir en un armazón de techo y muros en combinación, afirmados entre ellos o hechos de una sola pieza. Las formas posibles de la estructura son casi infinitas, incluida la variedad de tres lados de un rectángulo afirmados en un conjunto llamado armadura (figura 2c), la de forma de iglesia de lados verticales y techo inclinado (figura 2d), la de parábola (figura 2e) y la de semicírculo o cúpula.
La estructura básica y los muros exteriores, suelos y techo pueden estar hechos como un todo unido, muy parecido a una tubería rectangular con los extremos abiertos o cerrados. Estas formas pueden moldearse en plástico.

2. Edificios de varias plantas

La forma más frecuente de construcción de edificaciones es el entramado reticular metálico. Se trata en esencia de los elementos verticales que aparecen en las figuras 3a, 3b y 3c, combinados con una estructura horizontal. En los edificios altos ya no se emplean muros de carga con elementos horizontales de la estructura, sino que se utilizan generalmente muros-cortina, es decir, fachadas ligeras no portantes.La estructura metálica más común consiste en múltiples elementos de construcción, como se recoge en la figura 3c. Para estructuras de más de 40 plantas se emplean diversas formas de hormigón armado, acero o mezcla de estos dos. Los elementos básicos de la estructura metálica son los pilares verticales o pies derechos, las vigas horizontales que abarcan la luz en su mayor distancia entre los pilares y las viguetas que cubren la luz de distancias más cortas. La estructura se refuerza para evitar distorsiones y posibles derrumbes debidos a pesos desiguales o fuerzas vibratorias. La estabilidad lateral se consigue conectando entre sí los pilares, vigas y viguetas maestras, por el soporte que proporcionan a la estructura los suelos y los muros interiores, y por las conexiones rígidas en diagonal entre pilares y entre vigas (figura 3a). El hormigón armado puede emplearse de un modo similar, pero en este caso se deben utilizar muros de hormigón en lugar de riostras, para dar una mayor estabilidad lateral.
Entre las nuevas técnicas de construcción de edificios de cierta altura se encuentran la inserción de paneles prefabricados dentro del entramado metálico, las estructuras suspendidas o colgantes y las estructuras estáticas compuestas.
En la técnica de inserción se construye una estructura metálica con un núcleo central que incluye escaleras de incendios, ascensores, fontanería, tuberías y cableado eléctrico. En los huecos entre las estructuras horizontales y verticales se insertan paneles prefabricados en forma de cajón. Éstos permitirán efectuar transformaciones posteriores en el edificio.


En la técnica colgante, se construye un núcleo central vertical, y en su parte superior se fija una fuerte estructura horizontal de cubierta. Todos los pisos a excepción de la planta baja quedan sujetos al núcleo y a los elementos de tensión que cuelgan de la estructura de la cubierta. Una vez terminado el núcleo central, las plantas se van construyendo de arriba a abajo.
En la técnica de apilamiento o estructura estática compuesta (figura 3c) se colocan paneles prefabricados en forma de cajón con la ayuda de grúas especiales, unos sobre otros, y posteriormente se fijan entre ellos.
En edificios de más de 40 plantas el acero se considera el material más adecuado. Sin embargo, los últimos avances en el desarrollo de nuevos tipos de hormigón compiten con el acero. Los edificios de gran altura a menudo requieren soluciones estructurales más elaboradas para resistir la fuerza del viento y, en ciertos países, la fuerza de terremotos. Uno de los sistemas de estructura más habituales es el tubo exterior estructural, empleado en la construcción del World Trade Center (411 m) en Nueva York. En él, con pilares separados y conectados firmemente a vigas de carrera horizontales sobre el perímetro del edificio, se consigue la fuerza suficiente para soportar las cargas y la rigidez necesaria para reducir las desviaciones laterales. En este caso, para el tubo estructural se empleó una mezcla de hormigón y materiales de construcción compuestos, hechos de elementos estructurales de acero encofrados con hormigón armado.
En los edificios de gran altura se suele utilizar una combinación de acero y hormigón armado. La elevada relación resistencia-peso del acero es excelente para los elementos de luz horizontal. Los hormigones de alta dureza pueden aportar de un modo económico la resistencia a la fuerza de compresión necesaria en los elementos verticales. Además, las propiedades de la masa interna y la humedad del hormigón ayudan a reducir los efectos de las vibraciones, uno de los problemas más usuales en los edificios de gran altura.

C. Muros exteriores (fachadas) y cubiertas

Los muros de cortina o fachadas ligeras son el tipo más frecuente de muros no portantes, y se pueden montar a pie de obra o en origen. Son elementos cuya superficie o piel exterior se ha tratado con material de aislamiento, barreras de vapor o aislamientos acústicos, y una superficie interior que puede formar parte de los muros de cortina o unirse a ellos. La capa exterior puede estar hecha de metales (acero inoxidable, aluminio, bronce), albañilería (hormigón, ladrillo, baldosa) o vidrio. Para las fachadas también se utiliza piedra caliza, mármol, granito y paneles de hormigón prefabricados.
El método tradicional de construcción de las cubiertas es colocar rollos de tela asfáltica laminada cubiertos de grava, sobre los elementos de hormigón o acero de la estructura. También se utilizan materiales sintéticos en lugar de rollos de tela asfáltica. Hay algunos en forma de hierba y alfombras hechas de plástico que se pueden instalar en zonas recreativas del tejado a bajo coste.


D. Separaciones interiores

Los métodos tradicionales de división interna de los edificios han consistido en muros de albañilería de 10 a 15 cm de espesor de hormigón, yeso o piedra pómez, pintados o encalados; también se han utilizado estructuras de madera o metal cubiertas con listones de madera enyesados. El uso de cartón yeso y madera laminada está muy extendido.
Para conseguir mayor flexibilidad dentro de los edificios se emplean sistemas intercambiables y desmontables cuya única restricción es el espacio que queda entre los pilares. Estas separaciones pueden estar hechas de materiales metálicos, paneles prefabricados de cartón yeso, sistemas de cortinas plegables a modo de acordeón, o en caso de problemas de ruidos, cortinas plegables en sentido horizontal o vertical. Los materiales ligeros suelen tener el inconveniente de no aislar los ruidos y no proteger adecuadamente la intimidad. No obstante las nuevas tendencias incluyen la instalación de separaciones ligeras pero utilizando cada vez más materiales que reduzcan y limiten el ruido. En muchos edificios los únicos muros de albañilería son los muros contra incendios, entre los que se incluyen los huecos de ascensores, escaleras y pasillos principales.

E. Control ambiental

En muchos países se han desarrollado importantes avances en sistemas de control de calefacción, refrigeración, ventilación, iluminación y de sonidos. En la mayoría de los grandes edificios se ha estandarizado el aire acondicionado para todo el año. Algunas zonas de los edificios se refrigeran incluso en invierno, dependiendo de la distancia entre los muros exteriores y del calor que pueden generar la iluminación, los equipos eléctricos o la actividad humana dentro del edificio. Al mejorar el nivel y la calidad de la iluminación, el coste de los sistemas mecánicos y eléctricos en los edificios grandes ha crecido en mayor medida que en las casas familiares. Estos costes pueden llegar a suponer un tercio o un cuarto del coste total de la construcción.

F. Sistemas eléctricos y de comunicación

La extensión del uso de electricidad, teléfono, equipos de transmisión por faxcircuitos cerrados de televisión, intercomunicaciones, alarmas y sistemas de seguridad, ha supuesto un aumento en la cantidad de cableado que se instala en los edificios. Los cables principales se tienden verticalmente en conductos abiertos que se ramifican por cada planta a través de los techos de las mismas o debajo de las baldosas.
La electricidad que necesitan los edificios ha aumentado a causa de los numerosos y complejos equipos que se instalan. Para evitar las consecuencias de fallos en el suministro se suelen instalar equipos generadores de emergencia en muchos edificios, que en algunos casos, como en zonas alejadas, disponen de sus propios sistemas para generar energía. Cuando se utilizan generadores diesel o de turbina de gas, el calor que producen las máquinas puede aprovecharse para otros usos del edificio.

G. Transporte vertical

Los ascensores por cable, de control automático y alta velocidad, son el tipo de transporte vertical más utilizado en edificaciones de altura. Los edificios bajos y las plantas inferiores de los edificios comerciales suelen tener Escaleras mecánicas. En caso de incendio debería contarse al menos con dos vías de salida de la zona principal del edificio. Por ello, además de los ascensores y las escaleras mecánicas, todos los edificios, incluso los más altos, deben disponer de dos escaleras protegidas a lo largo de todo el edificio.

H. Suministro de agua y eliminación de residuos

Los edificios deben contar con un sistema de tuberías de suministro de agua para beber, lavado, cocinado, instalaciones sanitarias, sistemas internos de extinción de incendios (ya sea con tuberías y mangueras fijas o por aspersores automáticos), sistemas de aire acondicionado y calderas.
La eliminación de los desperdicios secos y húmedos en los edificios se lleva a cabo por medio de una gran variedad de sistemas. Un método muy usual es verter los desperdicios líquidos a tuberías conectadas a la red de alcantarillado.

4. Documentales acerca de los temas del blog.  

 A continuación veremos unos documentales acerca de las obras de ingeniería civil o las obras en las que interviene un ingeniero civil o un Ing. civil estructural.

Rascacielos redondo

                                                                                     

  Megaestructuras, El supercasino de Las Vegas


 El edificio inteligente de china Pearl River Tower mega estructuras


 National Geographic Megaestructuras La Maravilla Le Las Islas Del Mundo




 Discovery Channel - Megaconstrucciones - Ingenieria de lo imposible


La isla Palmera de Dubai

                   
 El rascacielos inclinado de Abu Dhabi Megaestructuras completo capital gate


El Maglev



Puente sobre el estrecho de Gibraltar


La presa del Río Hover






REFERENCIAS:
  • http://www.monografias.com/trabajos10/ingen/ingen.shtml
  • http://www.monografias.com/trabajos10/ingen/ingen2.shtml
  • http://www.youtube.com/?gl=ES&hl=es


  






sábado, 29 de diciembre de 2012

MATERIALES DE CONSTRUCCIÓN Y RESISTENCIA DE MATERIALES

MATERIALES DE CONSTRUCCIÓN Y RESISTENCIA DE MATERIALES

Un material de construcción es una materia prima o con más frecuencia un producto manufacturado, empleado en la construcción de edificios u obras de ingeniería civil.

Orígenes

Desde sus comienzos, el ser humano ha modificado su entorno para adaptarlo a sus necesidades. Para ello ha hecho uso de todo tipo de materiales naturales que, con el paso del tiempo y el desarrollo de la tecnología, se han ido trasformando en distintos productos mediante procesos de manufactura de creciente sofisticación. Los materiales naturales sin procesar (arcilla, arena, mármol) se suelen denominar materias primas, mientras que los productos elaborados a partir de ellas (ladrillo, vidrio, baldosa) se denominan materiales de construcción.
No obstante, en los procesos constructivos muchas materias primas se siguen utilizando con poco o ningún tratamiento previo. En estos casos, estas materias primas se consideran también materiales de construcción propiamente dichos.
Por este motivo, es posible encontrar un mismo material englobado en distintas categorías: por ejemplo, la arena puede encontrarse como material de construcción (lechos o camas de arena bajo algunos tipos de pavimento), o como parte integrante de otros materiales de construcción (como los morteros), o como materia prima para la elaboración de un material de construcción distinto (el vidrio, o la fibra de vidrio).
Los primeros materiales empleados por el hombre fueron el barro, la piedra, y fibras vegetales como madera o paja.
Los primeros "materiales manufacturados" por el hombre probablemente hayan sido los ladrillos de barro (adobe), que se remontan hasta el 13.000 a. C, mientras que los primeros ladrillos de arcilla cocida que se conocen datan del 4.000 a. C.
Entre los primeros materiales habría que mencionar también tejidos y pieles, empleados como envolventes en las tiendas, o a modo de puertas y ventanas primitivas.

Características

Los materiales de construcción se emplean en grandes cantidades, por lo que deben provenir de materias primas abundantes y baratas. Por ello, la mayoría de los materiales de construcción se elaboran a partir de materiales de gran disponibilidad como arena, arcilla o piedra.
Además, es conveniente que los procesos de manufactura requeridos consuman poca energía y no sean excesivamente elaborados. Esta es la razón por la que el vidrio es considerablemente más caro que el ladrillo, proviniendo ambos de materias primas tan comunes como la arena y la arcilla, respectivamente.
Los materiales de construcción tienen como característica común el ser duraderos. Dependiendo de su uso, además deberán satisfacer otros requisitos tales como la dureza, la resistencia mecánica, la resistencia al fuego, o la facilidad de limpieza.
Por norma general, ningún material de construcción cumple simultáneamente todas las necesidades requeridas: la disciplina de la construcción es la encargada de combinar los materiales para satisfacer adecuadamente dichas necesidades.

Propiedades de los materiales

Con objeto de utilizar y combinar adecuadamente los materiales de construcción los proyectistas deben conocer sus propiedades. Los fabricantes deben garantizar unos requisitos mínimos en sus productos, que se detallan en hojas de especificaciones. Entre las distintas propiedades de los materiales se encuentran:
  • Densidad: relación entre la masa y el volumen
  • Higroscopicidad: capacidad para absorber el agua
  • Coeficiente de dilatación: variación de tamaño en función de la temperatura
  • Conductividad térmica: facilidad con que un material permite el paso del calor
  • Resistencia mecánica: capacidad de los materiales para soportar esfuerzos
  • Elasticidad: capacidad para recuperar la forma original al desaparecer el esfuerzo
  • Plasticidad: deformación permanente del material ante una carga o esfuerzo
  • Rigidez: la resistencia de un material a la deformación

Regulación

En los países desarrollados, los materiales de construcción están regulados por una serie de códigos y normativas que definen las características que deben cumplir, así como su ámbito de aplicación.
El propósito de esta regulación es doble: por un lado garantiza unos estándares de calidad mínimos en la construcción, y por otro permite a los arquitectos e ingenieros conocer de forma más precisa el comportamiento y características de los materiales empleados.
Las normas internacionales más empleadas para regular los materiales de construcción son las normas ISO.
En España existe la entidad certificadora AENOR con el mismo propósito.

Nomenclatura

Puesto que los productos deben pasar unos controles de calidad antes de poder ser utilizados, la totalidad de los materiales empleados hoy día en la construcción están suministrados por empresas. Para los materiales más comunes existen multitud de fábricas y marcas comerciales, por lo que el nombre genérico del material se respeta (cemento, ladrillo, etc). Sin embargo, cuando el fabricante posee una parte importante del mercado, es común que el nombre genérico sea sustituido por el de la marca dominante. Este es el caso del fibrocemento (Uralita), del cartón yeso (Pladur), o de los suelos laminados (Pergo). Tampoco es inusual que determinados productos, bien sea por ser más específicos, minoritarios, o recientes, sólo sean suministrados por un fabricante. En estos casos, no siempre existe un nombre genérico para el material, que recibe entonces el nombre o marca con el que se comercializa. Esta situación se produce frecuentemente en materiales compuestos (como en algunos paneles sandwich) o en composites muy especializados.

Tipos

Atendiendo a la materia prima utilizada para su fabricación, los materiales de construcción se pueden clasificar en diversos grupos:

Arena

Se emplea arena como parte de morteros y hormigones
  • Arena
El principal componente de la arena es la sílice o dióxido de silicio (SiO2). De este compuesto químico se obtiene:
  • Vidrio, material transparente obtenido del fundido de sílice.
  • Fibra de vidrio, utilizada como aislante térmico o como componente estructural (GRC, GRP)
  • Vidrio celular, un vidrio con burbujas utilizado como aislante.

Arcilla

La arcilla es químicamente similar a la arena: contiene, además de dióxido de silicio, óxidos de aluminio y agua. Su granulometría es mucho más fina, y cuando está húmeda es de consistencia plástica. La arcilla mezclada con polvo y otros elementos del propio suelo forma el barro, material que se utiliza de diversas formas:
  • Barro, compactado "in situ" produce tapial
  • Cob, mezcla de barro, arena y paja que se aplica a mano para construir muros.
  • Adobe, ladrillos de barro, o barro y paja, secados al sol.
Cuando la arcilla se calienta a elevadas temperaturas (900ºC o más),2 ésta se endurece, creando los materiales cerámicos:
  • Ladrillo, ortoedro que conforma la mayoría de paredes y muros.
  • Teja, pieza cerámica destinada a canalizar el agua de lluvia hacia el exterior de los edificios.
  • Gres, de gran dureza, empleado en pavimentos y revestimientos de paredes. En formato pequeño se denomina gresite
  • Azulejo, cerámica esmaltada, de múltiples aplicaciones como revestimiento.
De un tipo de arcilla muy fina llamada bentonita se obtiene:
  • Lodo bentonítico, sustancia muy fluida empleada para contener tierras y zanjas durante las tareas de cimentación

Piedra

La piedra se puede utilizar directamente sin tratar, o como materia prima para crear otros materiales. Entre los tipos de piedra más empleados en construcción destacan:
  • Granito, tradicionalmente usado en toda clase de muros y edificaciones, actualmente se usa principalmente en suelos (en forma de losas), aplacados y encimeras. De esta piedra suele fabricarse el:
    • Adoquín, ladrillo de piedra con el que se pavimentan algunas calzadas.
  • Mármol, piedra muy apreciada por su estética, se emplea en revestimientos. En forma de losa o baldosa.
  • Pizarra, alternativa a la teja en la edificación tradicional. También usada en suelos.
  • Caliza, piedra más usada en el pasado que en la actualidad, para paredes y muros.
  • Arenisca, piedra compuesta de arena cementada, ha sido un popular material de construcción desde la antigüedad.
La piedra en forma de guijarros redondeados se utiliza como acabado protector en algunas cubiertas planas, y como pavimento en exteriores. También es parte constitutiva del hormigón
  • Grava, normalmente canto rodado.
Mediante la pulverización y tratamiento de distintos tipos de piedra se obtiene la materia prima para fabricar la práctica totalidad de los conglomerantes utilizados en construcción:
  • Cal, Óxido de calcio (CaO) utilizado como conglomerante en morteros, o como acabado protector.
  • Yeso, sulfato de calcio semihidratado (CaSO4 · 1/2H2O), forma los guarnecidos y enlucidos.
    • Escayola, yeso de gran pureza utilizado en falsos techos y molduras.
  • Cemento, producto de la calcinación de piedra caliza y otros óxidos.
El cemento se usa como conglomerante en diversos tipos de materiales:
  • Terrazo, normalmente en forma de baldosas, utiliza piedras de mármol como árido.
  • Piedra artificial, piezas prefabricadas con cemento y diversos tipos de piedra.
  • Fibrocemento, lámina formada por cemento y fibras prensadas. Antiguamente de amianto, actualmente de fibra de vidrio.
El cemento mezclado con arena forma el mortero: una pasta empleada para fijar todo tipo de materiales (ladrillos, baldosas, etc), y también como material de revestimiento (enfoscado) cuando yeso y cal no son adecuados, como por ejemplo en exteriores, o cuando se precisa una elevada resistencia o dureza.

  • Mortero
    • Mortero monocapa, un mortero prefabricado, coloreado en masa mediante aditivos
El cemento mezclado con arena y grava forma:
  • Hormigón, que puede utilizarse solo o armado.
    • Hormigón, empleado sólo como relleno.
    • Hormigón armado, el sistema más utilizado para erigir estructuras
    • GRC, un hormigón de árido fino armado con fibra de vidrio
    • Bloque de hormigón, similar a un ladrillo grande, pero fabricado con hormigón.
El yeso también se combina con el cartón para formar un material de construcción de gran popularidad en la construcción actual, frecuentemente utilizado en la elaboración de tabiques:
  • Cartón yeso, denominado popularmente Pladur por asimilación con su principal empresa distribuidora, es también conocido como Panel Yeso.
Otro material de origen pétreo se consigue al fundir y estirar basalto, generando:
  • Lana de roca, usado en mantas o planchas rígidas como aislante térmico.

Metálicos

Los más utilizados son el hierro y el aluminio. El primero se alea con carbono para formar:
  • Acero, empleado para estructuras, ya sea por sí solo o con hormigón, formando entonces el hormigón armado.
    • Perfiles metálicos
    • Redondos
    • Acero inoxidable
    • Acero cortén
Otros metales empleados en construcción:
  • Aluminio, en carpinterías y paneles sandwich.
  • Zinc, en cubiertas.
  • Titanio, revestimiento inoxidable de reciente aparición.
  • Cobre, esencialmente en instalaciones de electricidad y fontanería.
  • Plomo, en instalaciones de fontanería antiguas. La ley obliga a su retirada, por ser perjudicial para la salud.

Orgánicos

Fundamentalmente la madera y sus derivados, aunque también se utilizan o se han utilizado otros elementos orgánicos vegetales, como paja, bambú, corcho, lino, elementos textiles o incluso pieles animales.
  • Madera
  • Contrachapado
  • OSB
  • Tablero aglomerado
  • Madera cemento
  • Linóleo suelo laminar creado con aceite de lino y harinas de madera o corcho sobre una base de tela.
  • Guadua

Sintéticos

Fundamentalmente plásticos derivados del petróleo, aunque frecuentemente también se pueden sintetizar. Son muy empleados en la construcción debido a su inalterabilidad, lo que al mismo tiempo los convierte en materiales muy poco ecológicos por la dificultad a la hora de reciclarlos.
También se utilizan alquitranes y otros polímeros y productos sintéticos de diversa naturaleza. Los materiales obtenidos se usan en casi todas las formas imaginables: aglomerantes, sellantes, impermeabilizantes, aislantes, o también en forma de pinturas, esmaltes, barnices y lasures.
  • PVC o policloruro de vinilo, con el que se fabrican carpinterías y redes de saneamiento, entre otros.
    • Suelos vinílicos, normalmente comercializados en forma de láminas continuas.
  • Polietileno. En su versión de alta densidad (HDPE ó PEAD) es muy usado como barrera de vapor, aunque tiene también otros usos
  • Poliestireno empleado como aislante térmico
    • Poliestireno expandido material de relleno de buen aislamiento térmico.
    • Poliestireno extrusionado, aislante térmico impermeable
  • Polipropileno como sellante, en canalizaciones diversas, y en geotextiles
  • Poliuretano, en forma de espuma se emplea como aislante térmico. Otras formulaciones tienen diversos usos.
  • Poliéster, con él se fabrican algunos geotextiles
  • ETFE, como alternativa al vidrio en cerramientos, entre otros.
  • EPDM, como lámina impermeabilizante y en juntas estancas.
  • Neopreno, como junta estanca, y como "alma" de algunos paneles sandwich
  • Resina epoxi, en pinturas, y como aglomerante en terrazos y productos de madera.
  • Acrílicos, derivados del propileno de diversa composición y usos:
    • Metacrilato, plástico que en forma trasparente puede sustituir al vidrio.
    • Pintura acrílica, de diversas composiciones.
  • Silicona, polímero del silicio, usado principalmente como sellante e impermeabilizante.
  • Asfalto en carreteras, y como impermeabilizante en forma de lámina y de imprimación.

Resistencia de materiales

La resistencia de materiales clásica es una disciplina de la ingeniería mecánica y la ingeniería estructural que estudia los sólidos deformables mediante modelos simplificados. La resistencia de un elemento se define como su capacidad para resistir esfuerzos y fuerzas aplicadas sin romperse, adquirir deformaciones permanentes o deteriorarse de algún modo.
Un modelo de resistencia de materiales establece una relación entre las fuerzas aplicadas, también llamadas cargas o acciones, y los esfuerzos y desplazamientos inducidos por ellas. Generalmente las simplificaciones geométricas y las restricciones impuestas sobre el modo de aplicación de las cargas hacen que el campo de deformaciones y tensiones sean sencillos de calcular.
Para el diseño mecánico de elementos con geometrías complicadas la resistencia de materiales suele ser insuficiente y es necesario usar técnicas basadas en la teoría de la elasticidad o la mecánica de sólidos deformables más generales. Esos problemas planteados en términos de tensiones y deformaciones pueden entonces ser resueltos de forma muy aproximada con métodos numéricos como el análisis por elementos finitos.

En este video observaremos un ejemplo en las vigas

Enfoque de la resistencia de materiales

La teoría de sólidos deformables requiere generalmente trabajar con tensiones y deformaciones. Estas magnitudes vienen dadas por campos tensoriales definidos sobre dominios tridimensionales que satisfacen complicadas ecuaciones diferenciales.
Sin embargo, para ciertas geometrías aproximadamente unidimensionales (vigas, pilares, celosías, arcos, etc.) o bidimensionales (placas y láminas, membranas, etc.) el estudio puede simplificarse y se pueden analizar mediante el cálculo de esfuerzos internos definidos sobre una línea o una superficie en lugar de tensiones definidas sobre un dominio tridimensional. Además las deformaciones pueden determinarse con los esfuerzos internos a través de cierta hipótesis cinemática. En resumen, para esas geometrías todo el estudio puede reducirse al estudio de magnitudes alternativas a deformaciones y tensiones.
El esquema teórico de un análisis de resistencia de materiales comprende:
  • La hipótesis cinemática establece cómo serán las deformaciones o el campo de desplazamientos para un determinado tipo de elementos bajo cierto tipo de solicitudes. Para piezas prismáticas las hipótesis más comunes son la hipótesis de Bernouilli-Navier para la flexión y la hipótesis de Saint-Venant para la torsión.
  • La ecuación constitutiva, que establece una relación entre las deformaciones o desplazamientos deducibles de la hipótesis cinemática y las tensiones asociadas. Estas ecuaciones son casos particulares de las ecuaciones de Lamé-Hooke.
  • Las ecuaciones de equivalencia son ecuaciones en forma de integral que relacionan las tensiones con los esfuerzos internos.
  • Las ecuaciones de equilibrio relacionan los esfuerzos internos con las fuerzas exteriores.
En las aplicaciones prácticas el análisis es sencillo. Se construye un esquema ideal de cálculo formado por elementos unidimensionales o bidimensionales, y se aplican fórmulas preestablecidas en base al tipo de solicitación que presentan los elementos. Esas fórmulas preestablecidas que no necesitan ser deducidas para cada caso, se basan en el esquema de cuatro puntos anterior. Más concretamente la resolución práctica de un problema de resistencia de materiales sigue los siguientes pasos:
  1. Cálculo de esfuerzos, se plantean las ecuaciones de equilibrio y ecuaciones de compatibilidad que sean necesarias para encontrar los esfuerzos internos en función de las fuerzas aplicadas.
  2. Análisis resistente, se calculan las tensiones a partir de los esfuerzos internos. La relación entre tensiones y deformaciones depende del tipo de solicitación y de la hipótesis cinemática asociada: flexión de Bernouilli, flexión de Timoshenko, flexión esviada, tracción, pandeo, torsión de Coulomb, teoría de Collignon para tensiones cortantes, etc.
  3. Análisis de rigidez, se calculan los desplazamientos máximos a partir de las fuerzas aplicadas o los esfuerzos internos. Para ello puede recurrirse directamente a la forma de la hipótesis cinemática o bien a la ecuación de la curva elástica, las fórmulas vectoriales de Navier-Bresse o los teoremas de Castigliano.

Hipótesis cinemática

La hipótesis cinemática es una especificación matemática de los desplazamientos de un sólido deformable que permite calcular las deformaciones en función de un conjunto de parámetros incógnita.
El concepto se usa especialmente en el cálculo de elementos lineales (por ejemplo, vigas) y elementos bidimensionales, donde gracias a la hipótesis cinemática se pueden obtener relaciones funcionales más simples. Así pues, gracias a la hipótesis cinemática se pueden relacionar los desplazamientos en cualquier punto del sólido deformable de un dominio tridimensional con los desplazamientos especificados sobre un conjunto unidimensional o bidimensional.

Hipótesis cinemática en elementos lineales

La resistencia de materiales propone para elementos lineales o prismas mecánicos, como las vigas y pilares, en las que el desplazamiento de cualquier punto se puede calcular a partir de desplazamientos y giros especificados sobre el eje baricéntrico. Eso significa que por ejemplo para calcular una viga en lugar de espeficar los desplazamientos de cualquier punto en función de tres coordenadas, podemos expresarlos como función de una sola coordenada sobre el eje baricéntrico, lo cual conduce a sistemas de ecuaciones diferenciales relativamente simples. Existen diversos tipos de hipótesis cinemáticas según el tipo de solicitación de la viga o elemento unidimensional:
  • La hipótesis de Navier-Bernouilli, que se usa para elementos lineales alargados sometidos a flexión cuando las deformaciones por cortante resultan pequeñas.
  • La hipótesis de Timoshenko, que se usa para los elementos lineales sometidos a flexión en un caso totalmente general ya que no se desprecia la deformación por cortante.
  • La hipótesis de Saint-Venant para la extensión, usada en piezas con esfuerzo normal para zonas de la viga alejadas de la zona de aplicación de las cargas.
  • La hipótesis de Saint-Venant para la torsión se usa para piezas prismáticas sometidas a torsión y en piezas con rigidez torsional grande.
  • La hipótesis de Coulomb se usa para piezas prismáticas sometidas a torsión y en piezas con rigidez torsional grande y sección circular o tubular. Esta hipótesis constituye una especialización del caso anterior.

Hipótesis cinemática en elementos superficiales

Para placas y láminas sometidas a flexión se usan dos hipótesis, que se pueden poner en correspondencia con las hipótesis de vigas
  • hipótesis de Love-Kirchhoff
  • hipótesis de Reissner-Mindlin

Ecuación constitutiva

Las ecuaciones constitutivas de la resistencia de materiales son las que explicitan el comportamiento del material, generalmente se toman como ecuaciones constitutivas las ecuaciones de Lamé-Hooke de la elasticidad lineal. Estas ecuaciones pueden ser especializadas para elementos lineales y superficiales. Para elementos lineales en el cálculo de las secciones, las tensiones sobre cualquier punto (y,z) de la sección puedan escribirse en función de las deformaciones como:
\sigma(y,z) = E \ \varepsilon(y,z)
\begin{cases}
\sigma_{xx} = \sigma & \varepsilon_{xx}=      \varepsilon\\
\sigma_{yy} = 0      & \varepsilon_{yy}= -\nu \varepsilon\\
\sigma_{zz} = 0      & \varepsilon_{zz}= -\nu \varepsilon
\end{cases}

En cambio, para elementos superficiales sometidos predominantemente a flexión como las placas la especialización de las ecuaciones de Hooke es:
\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \end{bmatrix} = \frac{E}{1-\nu^2}
\begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & 1-\nu \end{bmatrix}
\begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \end{bmatrix}
Además de ecuaciones constitutivas elásticas, en el cálculo estructural varias normativas recogen métodos de cálculo plástico donde se usan ecuaciones constitutivas de plasticidad.

Ecuaciones de equivalencia

Las ecuaciones de equivalencia expresan los esfuerzos resultantes a partir de la distribución de tensiones. Gracias a ese cambio es posible escribir ecuaciones de equilibrio que relacionen directamente las fuerzas aplicadas con los esfuerzos internos.

Elementos lineales

En elementos lineales rectos las coordenadas cartesianas para representar la geometría y expresar tensiones y esfuerzos, se escogen normalmente con el eje X paralelo al eje baricéntrico de la pieza, y los ejes Y y Z coincidiendo con las direcciones principales de inercia. En ese sistema de coordenadas la relación entre esfuerzo normal (Nx), esfuerzos cortantes (VyVz), el momento torsor (Mx) y los momentos flectores (MyMz) es:
 \begin{matrix}
  N_x = \int_\Sigma \sigma_{x} dydz & V_y = \int_\Sigma \tau_{xy} dydz & V_z = \int_\Sigma \tau_{xz} dydz \\
  M_x = \int_\Sigma (-\tau_{xy}z +\tau_{xz}y) dydz & M_y = \int_\Sigma z\sigma_{xx} dydz & M_z = \int_\Sigma -y\sigma_{xx} dydz
\end{matrix}
Donde las tensiones que aparecen son las componentes del tensor tensión para una pieza prismática:

 [T]_{xyz} = \begin{bmatrix}
  \sigma_x & \tau_{xy} & \tau_{xz} \\
  \tau_{xy} & 0 & 0 \\
  \tau_{xz} & 0 & 0
\end{bmatrix}
Ejes usuales para una pieza prismática recta, con una sección transversal recta, a la que se refieren los esfuerzos de sección.

Elementos bidimensionales

Para elementos bidimensionales es común tomar un sistema de dos coordenadas (cartesiano o curvilíneo) coincidentes con la superficie media, estando la tercera coordenada alineada con el espesor. Para una placa plana de espesor 2t y con un sistema de coordenadas en el que el plano XY coincide con su plano medio. Los esfuerzos se componen de 4 esfuerzos de membrana n_{uu}, n_{uv}, n_{vu}, n_{vv}\, (o esfuerzos axiles por unidad de área), 4 momentos flectores y 2 esfuerzos cortantes. Los esfuerzos de membrana usando un conjunto de coordenadas ortogonales (u,v)\, sobre una lámina de Reissner-Mindlin:
\begin{cases}
n_{uu} = \int_{-t}^{+t} \left(1-\frac{z}{R_u}\right)\sigma_{uu}\ dz &
n_{vu} = \int_{-t}^{+t} \left(1-\frac{z}{R_v}\right)\sigma_{uv}\ dz \\
n_{uv} = \int_{-t}^{+t} \left(1-\frac{z}{R_u}\right)\sigma_{uv}\ dz &
n_{vv} = \int_{-t}^{+t} \left(1-\frac{z}{R_v}\right)\sigma_{vv}\ dz 
\end{cases}
Donde R_u, R_v son los radios de curvatura en cada una de las direcciones coordenadas y z es la altura sobre la superficie media de la lámina. Los esfuerzos cortantes y los momentos flectores por unidad de área vienen dados por:
\begin{cases}
v_u = \int_{-t}^{+t} \left(1-\frac{z}{R_u}\right)\sigma_{uz}\ dz &
v_v = \int_{-t}^{+t} \left(1-\frac{z}{R_v}\right)\sigma_{vz}\ dz \\
m_{uu} = \int_{-t}^{+t} \left(1-\frac{z}{R_u}\right)\sigma_{uu}z\ dz &
m_{vu} = \int_{-t}^{+t} \left(1-\frac{z}{R_v}\right)\sigma_{uv}z\ dz \\
m_{uv} = \int_{-t}^{+t} \left(1-\frac{z}{R_u}\right)\sigma_{uv}z\ dz &
m_{vv} = \int_{-t}^{+t} \left(1-\frac{z}{R_v}\right)\sigma_{vv}z\ dz 
\end{cases}
El tensor tensión de una lámina general para la que valen las hipótesis de Reissner-Mindlin es:
 [T]_{uvz} = \begin{bmatrix}
  \sigma_{uu} & \sigma_{uv} & \sigma_{uz} \\
  \sigma_{uv} & \sigma_{vv} & \sigma_{vz} \\
  \sigma_{uz} & \sigma_{vz} & 0
\end{bmatrix}
Un caso particular de lo anterior lo constituyen las láminas planas cuya deformación se ajusta a la hipótesis de Love-Kirchhoff, caracterizada por que el vector normal a la superficie media deformada coincide con la normal deformada. Esa hipótesis es una muy buena aproximación cuando los esfuerzos cortantes son despreciables y en ese caso los momentos flectores por unidad de área en función de las tensiones vienen dados por:
 \begin{matrix}
 m_x = \int_{-t}^{t} z\sigma_{xx} dz & m_y = \int_{-t}^{t} z\sigma_{yy} dz & 
m_{yx}= m_{xy} = \int_{-t}^{t} z\sigma_{xy} dz
\end{matrix}
Donde las tensiones que aparecen son las componentes del tensor tensión para una lámina de Love-Kirchhoff:
 [T]_{xyz} = \begin{bmatrix}
  \sigma_{xx} & \sigma_{xy} & 0 \\
  \sigma_{xy} & \sigma_{yy} & 0 \\
  0 & 0 & 0
\end{bmatrix}

Ecuaciones de equilibrio

Las ecuaciones de equilibrio de la resistencia de materiales relacionan los esfuerzos internos con las fuerzas exteriores aplicadas. Las ecuaciones de equilibrio para elementos lineales y elementos bidimensionales son el resultado de escribir las ecuaciones de equilibrio elástico en términos de los esfuerzos en lugar de las tensiones.
Las ecuaciones de equilibrio para el campo de tensiones generales de la teoría de la elasticidad lineal:

  \frac{\partial \sigma_{xx}}{\partial x}+ \frac{\partial \sigma_{xy}}{\partial y}+ \frac{\partial \sigma_{xz}}{\partial z}= b_x

  \frac{\partial \sigma_{yx}}{\partial x}+ \frac{\partial \sigma_{yy}}{\partial y}+ \frac{\partial \sigma_{yz}}{\partial z} = b_y

  \frac{\partial \sigma_{zx}}{\partial x}+ \frac{\partial \sigma_{zy}}{\partial y}+ \frac{\partial \sigma_{zz}}{\partial z} = b_z

Si en ellas se trata de substituir las tensiones por los esfuerzos internos, se llega entonces a las ecuaciones de equilibrio de la resistencia de materiales. El procedimiento, que se detalla a continuación, es ligeramente diferente para elementos unidimensionales y bidimensionales.

Ecuaciones de equilibrio en elementos lineales rectos

En una viga recta horizontal, alineada con el eje X, y en la que las cargas son verticales y situadas sobre el plano XY, las ecuaciones de equilibrio relacionan el momento flector (Mz), el esfuerzo cortante (Vy) con la carga vertical (qy) y tienen la forma:
\frac{dM_z}{dx}=V_y \qquad \land \qquad \frac{dV_y}{dx} = -q_y \qquad \Rightarrow \qquad \frac{d^2M_z}{dx^2}= - q_y

Ecuaciones de equilibrio en elementos planos bidimensionales

Las ecuaciones de equilibrio para elementos bidimensionales (placas) en flexión análogas a las ecuaciones de la sección anterior para elementos lineales (vigas) relacionan los momentos por unidad de ancho (mxmymxy), con los esfuerzos cortantes por unidad de ancho (vxmy) y la carga superficial vertical (qs):
\begin{matrix} \cfrac{\partial m_{x}}{\partial x}+ \cfrac{\partial m_{xy}}{\partial y}=v_x \\ \cfrac{\partial m_{xy}}{\partial x}+ \cfrac{\partial m_{y}}{\partial y}=v_y \end{matrix}
\quad \land \quad \frac{\partial v_x}{\partial x}+ \frac{\partial v_y}{\partial y}= -q_s \qquad
\Rightarrow \qquad \frac{\partial^2 m_x}{\partial x^2}+ 2\frac{\partial^2 m_{xy}}{\partial y\partial x} + \frac{\partial^2 m_y}{\partial y^2}= -q_s

Relación entre esfuerzos y tensiones

El diseño mecánico de piezas requiere:
  • Conocimiento de las tensiones, para verificar si éstas sobrepasan los límites resistentes del material.
  • Conocimiento de los desplazamientos, para verificar si éstos sobrepasan los límites de rigidez que garanticen la funcionalidad del elemento diseñado.
En general, el cálculo de tensiones puede abordarse con toda generalidad desde la teoría de la elasticidad, sin embargo cuando la geometría de los elementos es suficientemente simple (como sucede en el caso de elementos lineales o bidimensionales) las tensiones y desplazamientos pueden ser calculados de manera mucho más simple mediante los métodos de la resistencia de materiales, que directamente a partir del planteamiento general del problema elástico.

Elementos lineales o unidimensionales

El cálculo de tensiones se puede obtener a partir de la combinación de las fórmula de Navier para la flexión, la fórmula de Collignon-Jourawski y las fórmulas del cálculo de tensiones para la torsión.
El cálculo de desplazamientos en elementos lineales puede llevarse a cabo a partir métodos directos como la ecuación de la curva elástica, los teoremas de Mohr o el método matricial o a partir de métodos energéticos como los teoremas de Castigliano o incluso por métodos computacionales.

Elementos superficiales o bidimensionales

La teoría de placas de Love-Kirchhoff es el análogo bidimensional de la teoría de vigas de Euler-Bernouilli. Por otra parte, el cálculo de láminas es el análogo bidimensional del cálculo de arcos.
El análogo bidimensional para una placa de la ecuación de la curva elástica es la ecuación de Lagrange para la deflexión del plano medio de la placa. Para el cálculo de placas también es frecuente el uso de métodos variacionales.

Relación entre esfuerzos y desplazamientos

Otro problema importante en muchas aplicaciones de la resistencia de materiales es el estudio de la rigidez. Más concretamente ciertas aplicaciones requieren asegurar que bajo las fuerzas actuantes algunos elementos resistentes no superen nunca desplazamientos por encima de cierto valor prefijado. El cálculo de las deformaciones a partir de los esfuerzos puede determiarse mediante varios métodos semidirectos como el uso del teorema de Castigliano, las fórmulas vectoriales de Navier-Bresse, el uso de la ecuación de la curva elástica, el método matricial de la rigidez y otros métodos numéricos para los casos más complejos.



                       A continuación veremos un vídeo a cerca de nuevos materiales de construccion

REFERENCIAS:
  • http://es.wikipedia.org/wiki/Material_de_construcci%C3%B3n
  • http://es.wikipedia.org/wiki/Resistencia_de_materiales